具有人工智能的機(jī)器人
例如繁重的科學(xué)和工程計(jì)算本來(lái)是要人腦來(lái)承擔(dān)的,如今計(jì)算機(jī)不但能完成這種計(jì)算,而且能夠比人腦做得更快、更準(zhǔn)確,因此當(dāng)代人已不再把這種計(jì)算看作是“需要人類智能才能完成的復(fù)雜任務(wù)”,可見(jiàn)復(fù)雜工作的定義是隨著時(shí)代的發(fā)展和技術(shù)的進(jìn)步而變化的,人工智能這門科學(xué)的具體目標(biāo)也自然隨著時(shí)代的變化而發(fā)展。它一方面不斷獲得新的進(jìn)展,另一方面又轉(zhuǎn)向更有意義、更加困難的目標(biāo)。
通常,“機(jī)器學(xué)習(xí)”的數(shù)學(xué)基礎(chǔ)是“統(tǒng)計(jì)學(xué)”、“信息論”和“控制論”。還包括其他非數(shù)學(xué)學(xué)科。這類“機(jī)器學(xué)習(xí)”對(duì)“經(jīng)驗(yàn)”的依賴性很強(qiáng)。計(jì)算機(jī)需要不斷從解決一類問(wèn)題的經(jīng)驗(yàn)中獲取知識(shí),學(xué)習(xí)策略,在遇到類似的問(wèn)題時(shí),運(yùn)用經(jīng)驗(yàn)知識(shí)解決問(wèn)題并積累新的經(jīng)驗(yàn),就像普通人一樣。我們可以將這樣的學(xué)習(xí)方式稱之為“連續(xù)型學(xué)習(xí)”。但人類除了會(huì)從經(jīng)驗(yàn)中學(xué)習(xí)之外,還會(huì)創(chuàng)造,即“跳躍型學(xué)習(xí)”。這在某些情形下被稱為“靈感”或“頓悟”。一直以來(lái),計(jì)算機(jī)最難學(xué)會(huì)的就是“頓悟”?;蛘咴賴?yán)格一些來(lái)說(shuō),計(jì)算機(jī)在學(xué)習(xí)和“實(shí)踐”方面難以學(xué)會(huì)“不依賴于量變的質(zhì)變”,很難從一種“質(zhì)”直接到另一種“質(zhì)”,或者從一個(gè)“概念”直接到另一個(gè)“概念”。正因?yàn)槿绱?,這里的“實(shí)踐”并非同人類一樣的實(shí)踐。人類的實(shí)踐過(guò)程同時(shí)包括經(jīng)驗(yàn)和創(chuàng)造。這是智能化研究者夢(mèng)寐以求的東西。
2013年,帝金數(shù)據(jù)普數(shù)中心數(shù)據(jù)研究員SC WANG開(kāi)發(fā)了一種新的數(shù)據(jù)分析方法,該方法導(dǎo)出了研究函數(shù)性質(zhì)的新方法。作者發(fā)現(xiàn),新數(shù)據(jù)分析方法給計(jì)算機(jī)學(xué)會(huì)“創(chuàng)造”提供了一種方法。本質(zhì)上,這種方法為人的“創(chuàng)造力”的模式化提供了一種相當(dāng)有效的途徑。這種途徑是數(shù)學(xué)賦予的,是普通人無(wú)法擁有但計(jì)算機(jī)可以擁有的“能力”。從此,計(jì)算機(jī)不僅精于算,還會(huì)因精于算而精于創(chuàng)造。計(jì)算機(jī)學(xué)家們應(yīng)該斬釘截鐵地剝奪“精于創(chuàng)造”的計(jì)算機(jī)過(guò)于全面的操作能力,否則計(jì)算機(jī)真的有一天會(huì)“反捕”人類。
當(dāng)回頭審視新方法的推演過(guò)程和數(shù)學(xué)的時(shí)候,作者拓展了對(duì)思維和數(shù)學(xué)的認(rèn)識(shí)。數(shù)學(xué)簡(jiǎn)潔,清晰,可靠性、模式化強(qiáng)。在數(shù)學(xué)的發(fā)展史上,處處閃耀著數(shù)學(xué)大師們創(chuàng)造力的光輝。這些創(chuàng)造力以各種數(shù)學(xué)定理或結(jié)論的方式呈現(xiàn)出來(lái),而數(shù)學(xué)定理最大的特點(diǎn)就是:建立在一些基本的概念和公理上,以模式化的語(yǔ)言方式表達(dá)出來(lái)的包含豐富信息的邏輯結(jié)構(gòu)。應(yīng)該說(shuō),數(shù)學(xué)是最單純、最直白地反映著(至少一類)創(chuàng)造力模式的學(xué)科。
1956年夏季,以麥卡賽、明斯基、羅切斯特和申農(nóng)等為首的一批有遠(yuǎn)見(jiàn)卓識(shí)的年輕科學(xué)家在一起聚會(huì),共同研究和探討用機(jī)器模擬智能的一系列有關(guān)問(wèn)題,并首次提出了“人工智能”這一術(shù)語(yǔ),它標(biāo)志著“人工智能”這門新興學(xué)科的正式誕生。IBM公司“深藍(lán)”電腦擊敗了人類的世界國(guó)際象棋冠軍更是人工智能技術(shù)的一個(gè)完美表現(xiàn)。
從1956年正式提出人工智能學(xué)科算起,50多年來(lái),取得長(zhǎng)足的發(fā)展,成為一門廣泛的交叉和前沿科學(xué)。總的說(shuō)來(lái),人工智能的目的就是讓計(jì)算機(jī)這臺(tái)機(jī)器能夠像人一樣思考。如果希望做出一臺(tái)能夠思考的機(jī)器,那就必須知道什么是思考,更進(jìn)一步講就是什么是智慧。什么樣的機(jī)器才是智慧的呢?科學(xué)家已經(jīng)作出了汽車,火車,飛機(jī),收音機(jī)等等,它們模仿我們身體器官的功能,但是能不能模仿人類大腦的功能呢?到目前為止,我們也僅僅知道這個(gè)裝在我們天靈蓋里面的東西是由數(shù)十億個(gè)神經(jīng)細(xì)胞組成的器官,我們對(duì)這個(gè)東西知之甚少,模仿它或許是天下最困難的事情了。
當(dāng)計(jì)算機(jī)出現(xiàn)后,人類開(kāi)始真正有了一個(gè)可以模擬人類思維的工具,在以后的歲月中,無(wú)數(shù)科學(xué)家為這個(gè)目標(biāo)努力著。如今人工智能已經(jīng)不再是幾個(gè)科學(xué)家的專利了,全世界幾乎所有大學(xué)的計(jì)算機(jī)系都有人在研究這門學(xué)科,學(xué)習(xí)計(jì)算機(jī)的大學(xué)生也必須學(xué)習(xí)這樣一門課程,在大家不懈的努力下,如今計(jì)算機(jī)似乎已經(jīng)變得十分聰明了。例如,1997年5月,IBM公司研制的深藍(lán)(DEEP BLUE)計(jì)算機(jī)戰(zhàn)勝了國(guó)際象棋大師卡斯帕洛夫(KASPAROV)。大家或許不會(huì)注意到,在一些地方計(jì)算機(jī)幫助人進(jìn)行其它原來(lái)只屬于人類的工作,計(jì)算機(jī)以它的高速和準(zhǔn)確為人類發(fā)揮著它的作用。人工智能始終是計(jì)算機(jī)科學(xué)的前沿學(xué)科,計(jì)算機(jī)編程語(yǔ)言和其它計(jì)算機(jī)軟件都因?yàn)橛辛巳斯ぶ悄艿倪M(jìn)展而得以存在。
2019年3月4日,十三屆全國(guó)人大二次會(huì)議舉行新聞發(fā)布會(huì),大會(huì)發(fā)言人張業(yè)遂表示,已將與人工智能密切相關(guān)的立法項(xiàng)目列入立法規(guī)劃。
實(shí)際應(yīng)用
機(jī)器視覺(jué),指紋識(shí)別,人臉識(shí)別,視網(wǎng)膜識(shí)別,虹膜識(shí)別,掌紋識(shí)別,專家系統(tǒng),自動(dòng)規(guī)劃,智能搜索,定理證明,博弈,自動(dòng)程序設(shè)計(jì),智能控制,機(jī)器人學(xué),語(yǔ)言和圖像理解,遺傳編程等。
學(xué)科范疇
人工智能是一門邊緣學(xué)科,屬于自然科學(xué)和社會(huì)科學(xué)的交叉。
涉及學(xué)科
哲學(xué)和認(rèn)知科學(xué),數(shù)學(xué),神經(jīng)生理學(xué),心理學(xué),計(jì)算機(jī)科學(xué),信息論,控制論,不定性論
研究范疇
自然語(yǔ)言處理,知識(shí)表現(xiàn),智能搜索,推理,規(guī)劃,機(jī)器學(xué)習(xí),知識(shí)獲取,組合調(diào)度問(wèn)題,感知問(wèn)題,模式識(shí)別,邏輯程序設(shè)計(jì)軟計(jì)算,不精確和不確定的管理,人工生命,神經(jīng)網(wǎng)絡(luò),復(fù)雜系統(tǒng),遺傳算法
意識(shí)和人工智能
人工智能就其本質(zhì)而言,是對(duì)人的思維的信息過(guò)程的模擬。
對(duì)于人的思維模擬可以從兩條道路進(jìn)行,一是結(jié)構(gòu)模擬,仿照人腦的結(jié)構(gòu)機(jī)制,制造出“類人腦”的機(jī)器;二是功能模擬,暫時(shí)撇開(kāi)人腦的內(nèi)部結(jié)構(gòu),而從其功能過(guò)程進(jìn)行模擬?,F(xiàn)代電子計(jì)算機(jī)的產(chǎn)生便是對(duì)人腦思維功能的模擬,是對(duì)人腦思維的信息過(guò)程的模擬。
弱人工智能如今不斷地迅猛發(fā)展,尤其是2008年經(jīng)濟(jì)危機(jī)后,美日歐希望借機(jī)器人等實(shí)現(xiàn)再工業(yè)化,工業(yè)機(jī)器人以比以往任何時(shí)候更快的速度發(fā)展,更加帶動(dòng)了弱人工智能和相關(guān)領(lǐng)域產(chǎn)業(yè)的不斷突破,很多必須用人來(lái)做的工作如今已經(jīng)能用機(jī)器人實(shí)現(xiàn)。
而強(qiáng)人工智能則暫時(shí)處于瓶頸,還需要科學(xué)家們和人類的努力。
人機(jī)對(duì)弈
1996年2月10~17日, GARRY KASPAROV以4:2戰(zhàn)勝“深藍(lán)” (DEEP BLUE)。
1997年5月3~11日, GARRY KASPAROV以2。5:3。5輸于改進(jìn)后的“深藍(lán)”。
2003年2月GARRY KASPAROV 3:3戰(zhàn)平 “小深”(DEEP JUNIOR)。
2003年11月GARRY KASPAROV 2:2戰(zhàn)平 “X3D德國(guó)人” (X3D-FRITZ)。
模式識(shí)別
采用 $模式識(shí)別引擎,分支有2D識(shí)別引擎 ,3D識(shí)別引擎,駐波識(shí)別引擎以及多維識(shí)別引擎
2D識(shí)別引擎已推出指紋識(shí)別,人像識(shí)別 ,文字識(shí)別,圖像識(shí)別 ,車牌識(shí)別;駐波識(shí)別引擎已推出語(yǔ)音識(shí)別;3D識(shí)別引擎已推出指紋識(shí)別玉帶林中掛(玩游智能版1。25)
自動(dòng)工程
自動(dòng)駕駛(OSO系統(tǒng))
印鈔工廠(¥流水線)
獵鷹系統(tǒng)(YOD繪圖)
知識(shí)工程
以知識(shí)本身為處理對(duì)象,研究如何運(yùn)用人工智能和軟件技術(shù),設(shè)計(jì)、構(gòu)造和維護(hù)知識(shí)系統(tǒng)
專家系統(tǒng)
智能搜索引擎
計(jì)算機(jī)視覺(jué)和圖像處理
機(jī)器翻譯和自然語(yǔ)言理解
數(shù)據(jù)挖掘和知識(shí)發(fā)現(xiàn)
《視讀人工智能》:機(jī)器真的可以思考嗎?人的思維只是一個(gè)復(fù)雜的計(jì)算機(jī)程序嗎?本書著眼于人工智能這個(gè)有史以來(lái)最為棘手的科學(xué)問(wèn)題之一,集中探討了其背后的一些主要話題。人工智能不僅僅是一個(gè)虛構(gòu)的概念。人類對(duì)智能機(jī)體結(jié)構(gòu)半個(gè)世紀(jì)的研究表明:機(jī)器可以打敗人類最偉大的棋手,類人機(jī)器人可以走路并且能和人類進(jìn)行互動(dòng)。盡管早就有宣言稱智能機(jī)器指日可待,但此方面的進(jìn)展卻緩慢而艱難。意識(shí)和環(huán)境是困擾研究的兩大難題。我們到底應(yīng)該怎樣去制造智能機(jī)器呢?它應(yīng)該像大腦一樣運(yùn)轉(zhuǎn)?它是否需要軀體?從圖靈影響深遠(yuǎn)的奠基性研究到機(jī)器人和新人工智能的飛躍,本書圖文并茂的將人工智能在過(guò)去半個(gè)世紀(jì)的發(fā)展清晰的呈現(xiàn)在讀者面前。
《人工智能的未來(lái)》:詮釋了智能的內(nèi)涵,闡述了大腦工作的原理,并告訴我們?nèi)绾尾拍苤圃斐稣嬲饬x上的智能機(jī)器——這樣的智能機(jī)器將不再僅僅是對(duì)人類大腦的簡(jiǎn)單模仿,它們的智能在許多方面會(huì)遠(yuǎn)遠(yuǎn)超過(guò)人腦。霍金斯認(rèn)為,從人工智能到神經(jīng)網(wǎng)絡(luò),早先復(fù)制人類智能的努力無(wú)一成功,究其原因,都是由于人們并未真正了解智能的內(nèi)涵和人類大腦。所謂智能,就是人腦比較過(guò)去、預(yù)測(cè)未來(lái)的能力。大腦不是計(jì)算機(jī),不會(huì)亦步亦趨、按部就班的根據(jù)輸入產(chǎn)生輸出。大腦是一個(gè)龐大的記憶系統(tǒng),它儲(chǔ)存著在某種程度上反映世界真實(shí)結(jié)構(gòu)的經(jīng)驗(yàn),能夠記憶事件的前后順序及其相互關(guān)系,并依據(jù)記憶做出預(yù)測(cè)。形成智能、感覺(jué)、創(chuàng)造力以及知覺(jué)等基礎(chǔ)的,就是大腦的記憶-預(yù)測(cè)系統(tǒng)……
《人工智能哲學(xué)》:人工智能哲學(xué)是伴隨現(xiàn)代信息理論和計(jì)算機(jī)技術(shù)發(fā)展起來(lái)的一個(gè)哲學(xué)分支。本書收集了人工智能研究領(lǐng)域?qū)W者的十五篇代表性論文,這些論文為計(jì)算機(jī)科學(xué)的發(fā)展和人工智能哲學(xué)的建立作出了開(kāi)創(chuàng)性的貢獻(xiàn)。這些文章總結(jié)了人工智能發(fā)展的歷程,該學(xué)科發(fā)展的趨勢(shì),以及人工智能中的重要課題。在這些劃時(shí)代的著作中,包括有:現(xiàn)代計(jì)算機(jī)理論之父艾倫·圖靈的“計(jì)算機(jī)與智能”;美國(guó)哲學(xué)家塞爾的“心靈,大腦與程序”;J·E·欣頓等人的“分布式表述”,以及本書編者、英國(guó)人工智能學(xué)者M(jìn)·A·博登的“逃出中文屋”。
《人工智能:一種現(xiàn)代的方法》:本書以詳盡和豐富的資料,從理性智能體的角度,全面闡述了人工智能領(lǐng)域的核心內(nèi)容,并深入介紹了各個(gè)主要的研究方向,是一本難得的綜合性教材。全書分為八大部分:第一部分"人工智能",第二部分"問(wèn)題求解",第三部分"知識(shí)與推理",第四部分"規(guī)劃",第五部分"不確定知識(shí)與推理",第六部分"學(xué)習(xí)",第七部分"通訊、感知與行動(dòng)",第八部分"結(jié)論"。本書既詳細(xì)介紹了大量的基本概念、思想和算法,也描述了各研究方向最前沿的進(jìn)展,同時(shí)收集整理了詳實(shí)的歷史文獻(xiàn)與事件。因此本書適合于不同層次和領(lǐng)域的研究人員及學(xué)生,可以作為信息領(lǐng)域和相關(guān)領(lǐng)域的高等院校本科生和研究生的教材或教學(xué)輔導(dǎo)書目,也可以作為相關(guān)領(lǐng)域的科研與工程技術(shù)人員的參考書。
人工智能的傳說(shuō)可以追溯到古埃及,但隨著1941年以來(lái)電子計(jì)算機(jī)的發(fā)展,技術(shù)已最終可以創(chuàng)造出機(jī)器智能,“人工智能”(ARTIFICIAL INTELLIGENCE)一詞最初是在1956年DARTMOUTH學(xué)會(huì)上提出的,從那以后,研究者們發(fā)展了眾多理論和原理,人工智能的概念也隨之?dāng)U展,在它還不長(zhǎng)的歷史中,人工智能的發(fā)展比預(yù)想的要慢,但一直在前進(jìn),從40年前出現(xiàn)至今,已經(jīng)出現(xiàn)了許多AI程序,并且它們也影響到了其它 技術(shù)的發(fā)展。
1941年的一項(xiàng)發(fā)明使信息存儲(chǔ)和處理的各個(gè)方面都發(fā)生了革命。這項(xiàng)同時(shí)在美國(guó)和德國(guó)出現(xiàn)的 發(fā)明就是電子計(jì)算機(jī)。第一臺(tái)計(jì)算機(jī)要占用幾間裝空調(diào)的大房間,對(duì)程序員來(lái)說(shuō)是場(chǎng)噩夢(mèng):僅僅為運(yùn)行一 個(gè)程序就要設(shè)置成千的線路。1949年改進(jìn)后的能存儲(chǔ)程序的計(jì)算機(jī)使得輸入程序變得簡(jiǎn)單些,而且計(jì)算機(jī) 理論的發(fā)展產(chǎn)生了計(jì)算機(jī)科學(xué),并最終促使了人工智能的出現(xiàn)。計(jì)算機(jī)這個(gè)用電子方式處理數(shù)據(jù)的發(fā)明,為人工智能的可能實(shí)現(xiàn)提供了一種媒介。
雖然計(jì)算機(jī)為AI提供了必要的技術(shù)基礎(chǔ),但直到50年代早期人們才注意到人類智能與機(jī)器之間 的聯(lián)系。 NORBERT WIENER是最早研究反饋理論的美國(guó)人之一。最熟悉的反饋控制的例子是自動(dòng)調(diào)溫器。它將收集到的房間溫度與希望的溫度比較,并做出反應(yīng)將加熱器開(kāi)大或關(guān)小,從而控制環(huán)境溫度。這項(xiàng)對(duì)反饋 回路的研究重要性在于:WIENER從理論上指出,所有的智能活動(dòng)都是反饋機(jī)制的結(jié)果。而反饋機(jī)制是有可 能用機(jī)器模擬的。這項(xiàng)發(fā)現(xiàn)對(duì)早期AI的發(fā)展影響很大。
1955年末,NEWELL和SIMON做了一個(gè)名為"邏輯專家"(LOGIC THEORIST)的程序。這個(gè)程序被許多人 認(rèn)為是第一個(gè)AI程序。它將每個(gè)問(wèn)題都表示成一個(gè)樹(shù)形模型,然后選擇最可能得到正確結(jié)論的那一枝來(lái)求解 問(wèn)題。"邏輯專家"對(duì)公眾和AI研究領(lǐng)域產(chǎn)生的影響使它成為AI發(fā)展中一個(gè)重要的里程碑。1956年,被認(rèn)為是 人工智能之父的JOHN MCCARTHY組織了一次學(xué)會(huì),將許多對(duì)機(jī)器智能感興趣的專家學(xué)者聚集在一起進(jìn)行了一 個(gè)月的討論。他請(qǐng)他們到 VERMONT參加 " DARTMOUTH人工智能夏季研究會(huì)"。從那時(shí)起,這個(gè)領(lǐng)域被命名為 "人工智能"。雖然 DARTMOUTH學(xué)會(huì)不是非常成功,但它確實(shí)集中了AI的創(chuàng)立者們,并為以后的AI研究奠定了基礎(chǔ)。
DARTMOUTH會(huì)議后的7年中,AI研究開(kāi)始快速發(fā)展。雖然這個(gè)領(lǐng)域還沒(méi)明確定義,會(huì)議中的一些思想 已被重新考慮和使用了CARNEGIE MELLON大學(xué)和MIT開(kāi)始組建AI研究中心。研究面臨新的挑戰(zhàn):下一步需 要建立能夠更有效解決問(wèn)題的系統(tǒng),例如在"邏輯專家"中減少搜索;還有就是建立可以自我學(xué)習(xí)的系統(tǒng)。
1957年一個(gè)新程序,"通用解題機(jī)"(GPS)的第一個(gè)版本進(jìn)行了測(cè)試。這個(gè)程序是由制作"邏輯專家" 的同一個(gè)組開(kāi)發(fā)的。GPS擴(kuò)展了WIENER的反饋原理,可以解決很多常識(shí)問(wèn)題。兩年以后,IBM成立了一個(gè)AI研 究組。HERBERT GELERNETER花3年時(shí)間制作了一個(gè)解幾何定理的程序。
當(dāng)越來(lái)越多的程序涌現(xiàn)時(shí),MCCARTHY正忙于一個(gè)AI史上的突破。1958年MCCARTHY宣布了他的新成 果:LISP語(yǔ)言。 LISP到今天還在用。"LISP"的意思是"表處理"(LIST PROCESSING),它很快就為大多數(shù)AI開(kāi)發(fā)者采納。
1963年MIT從美國(guó)政府得到一筆220萬(wàn)美元的資助,用于研究機(jī)器輔助識(shí)別。這筆資助來(lái)自國(guó)防部 高級(jí)研究計(jì)劃署(ARPA),已保證美國(guó)在技術(shù)進(jìn)步上領(lǐng)先于蘇聯(lián)。這個(gè)計(jì)劃吸引了來(lái)自全世界的計(jì)算機(jī)科學(xué)家,加快了AI研究的發(fā)展步伐。
以人類的智慧創(chuàng)造出堪與人類大腦相平行的機(jī)器腦(人工智能),對(duì)人類來(lái)說(shuō)是一個(gè)極具誘惑的領(lǐng)域,人類為了實(shí)現(xiàn)這一夢(mèng)想也已經(jīng)奮斗了很多個(gè)年頭了。而從一個(gè)語(yǔ)言研究者的角度來(lái)看,要讓機(jī)器與人之間自由交流那是相當(dāng)困難的,甚至可以說(shuō)可能會(huì)是一個(gè)永無(wú)答案的問(wèn)題。人類的語(yǔ)言,人類的智能是如此的復(fù)雜,以至于我們的研究還并未觸及其導(dǎo)向本質(zhì)的外延部分的邊沿。
以后幾年出現(xiàn)了大量程序。其中一個(gè)叫"SHRDLU"。"SHRDLU"是"微型世界"項(xiàng)目的一部分,包括 在微型世界(例如只有有限數(shù)量的幾何形體)中的研究與編程。在MIT由MARVIN MINSKY領(lǐng)導(dǎo)的研究人員發(fā)現(xiàn),面對(duì)小規(guī)模的對(duì)象,計(jì)算機(jī)程序可以解決空間和邏輯問(wèn)題。其它如在60年代末出現(xiàn)的"STUDENT"可以解決代數(shù) 問(wèn)題,"SIR"可以理解簡(jiǎn)單的英語(yǔ)句子。這些程序的結(jié)果對(duì)處理語(yǔ)言理解和邏輯有所幫助。
70年代另一個(gè)進(jìn)展是專家系統(tǒng)。專家系統(tǒng)可以預(yù)測(cè)在一定條件下某種解的概率。由于當(dāng)時(shí)計(jì)算機(jī)已 有巨大容量,專家系統(tǒng)有可能從數(shù)據(jù)中得出規(guī)律。專家系統(tǒng)的市場(chǎng)應(yīng)用很廣。十年間,專家系統(tǒng)被用于股市預(yù) 測(cè),幫助醫(yī)生診斷疾病,以及指示礦工確定礦藏位置等。這一切都因?yàn)閷<蚁到y(tǒng)存儲(chǔ)規(guī)律和信息的能力而成為可能。
70年代許多新方法被用于AI開(kāi)發(fā),如MINSKY的構(gòu)造理論。另外DAVID MARR提出了機(jī)器視覺(jué)方 面的新理論,例如,如何通過(guò)一副圖像的陰影,形狀,顏色,邊界和紋理等基本信息辨別圖像。通過(guò)分析這些信 息,可以推斷出圖像可能是什么。同時(shí)期另一項(xiàng)成果是PROLOGE語(yǔ)言,于1972年提出。 80年代期間,AI前進(jìn)更為迅速,并更多地進(jìn)入商業(yè)領(lǐng)域。1986年,美國(guó)AI相關(guān)軟硬件銷售高達(dá)4。25億 美元。專家系統(tǒng)因其效用尤受需求。象數(shù)字電氣公司這樣的公司用XCON專家系統(tǒng)為VAX大型機(jī)編程。杜邦,通用 汽車公司和波音公司也大量依賴專家系統(tǒng)。為滿足計(jì)算機(jī)專家的需要,一些生產(chǎn)專家系統(tǒng)輔助制作軟件的公 司,如TEKNOWLEDGE和INTELLICORP成立了。為了查找和改正現(xiàn)有專家系統(tǒng)中的錯(cuò)誤,又有另外一些專家系統(tǒng)被設(shè)計(jì)出來(lái)。
人們開(kāi)始感受到計(jì)算機(jī)和人工智能技術(shù)的影響。計(jì)算機(jī)技術(shù)不再只屬于實(shí)驗(yàn)室中的一小群研究人員。 個(gè)人電腦和眾多技術(shù)雜志使計(jì)算機(jī)技術(shù)展現(xiàn)在人們面前。有了像美國(guó)人工智能協(xié)會(huì)這樣的基金會(huì)。因?yàn)锳I開(kāi)發(fā) 的需要,還出現(xiàn)了一陣研究人員進(jìn)入私人公司的熱潮。150多所像DEC(它雇了700多員工從事AI研究)這樣的公司共花了10億美元在內(nèi)部的AI開(kāi)發(fā)組上。
其它AI領(lǐng)域也在80年代進(jìn)入市場(chǎng)。其中一項(xiàng)就是機(jī)器視覺(jué)。 MINSKY和MARR的成果如今用到了生產(chǎn)線上的相機(jī)和計(jì)算機(jī)中,進(jìn)行質(zhì)量控制。盡管還很簡(jiǎn)陋,這些系統(tǒng)已能夠通過(guò)黑白區(qū)別分辨出物件形狀的不同。到1985年美國(guó)有一百多個(gè)公司生產(chǎn)機(jī)器視覺(jué)系統(tǒng),銷售額共達(dá)8千萬(wàn)美元。
但80年代對(duì)AI工業(yè)來(lái)說(shuō)也不全是好年景。86-87年對(duì)AI系統(tǒng)的需求下降,業(yè)界損失了近5億美元。象 TEKNOWLEDGE和INTELLICORP兩家共損失超過(guò)6百萬(wàn)美元,大約占利潤(rùn)的三分之一巨大的損失迫使許多研究領(lǐng) 導(dǎo)者削減經(jīng)費(fèi)。另一個(gè)令人失望的是國(guó)防部高級(jí)研究計(jì)劃署支持的所謂"智能卡車"。這個(gè)項(xiàng)目目的是研制一種能完成許多戰(zhàn)地任務(wù)的機(jī)器人。由于項(xiàng)目缺陷和成功無(wú)望,PENTAGON停止了項(xiàng)目的經(jīng)費(fèi)。
盡管經(jīng)歷了這些受挫的事件,AI仍在慢慢恢復(fù)發(fā)展。新的技術(shù)在日本被開(kāi)發(fā)出來(lái),如在美國(guó)首創(chuàng)的模糊邏輯,它可以從不確定的條件作出決策;還有神經(jīng)網(wǎng)絡(luò),被視為實(shí)現(xiàn)人工智能的可能途徑??傊?,80年代AI被引入了市場(chǎng),并顯示出實(shí)用價(jià)值??梢源_信,它將是通向21世紀(jì)之匙。 人工智能技術(shù)接受檢驗(yàn) 在"沙漠風(fēng)暴"行動(dòng)中軍方的智能設(shè)備經(jīng)受了戰(zhàn)爭(zhēng)的檢驗(yàn)。人工智能技術(shù)被用于導(dǎo)彈系統(tǒng)和預(yù)警顯示以 及其它先進(jìn)武器。AI技術(shù)也進(jìn)入了家庭。智能電腦的增加吸引了公眾興趣;一些面向蘋果機(jī)和IBM兼容機(jī)的應(yīng)用 軟件例如語(yǔ)音和文字識(shí)別已可買到;使用模糊邏輯,AI技術(shù)簡(jiǎn)化了攝像設(shè)備。對(duì)人工智能相關(guān)技術(shù)更大的需求促 使新的進(jìn)步不斷出現(xiàn)。人工智能已經(jīng)并且將繼續(xù)不可避免地改變我們的生活。